
Chapter 19

Ten Interesting Tools
In This Chapter
▶ Keeping track of application bugs

▶ Creating a safe place to test applications

▶ Getting your application placed on a user system

▶ Documenting your application

▶ Writing your application code

▶ Looking for application errors

▶ Working within an interactive environment

▶ Performing application testing

▶ Sorting the import statements in your application

▶ Keeping track of application versions

P 
ython, like most other programming languages, has strong third-party 
support in the form of various tools. A tool is any utility that enhances 

the natural capabilities of Python when building an application. So, a debug-
ger is considered a tool because it’s a utility, but a library isn’t. Libraries are 
instead used to create better applications. (You can see some of them listed 
in Chapter 20.)

Even making the distinction between a tool and something that isn’t a tool, 
such as a library, doesn’t reduce the list by much. Python enjoys access to 
a wealth of general-purpose and special tools of all sorts. In fact, the site at 
https://wiki.python.org/moin/DevelopmentTools breaks these 
tools down into the following 13 categories:

 ✓ AutomatedRefactoringTools

 ✓ BugTracking

 ✓ ConfigurationAndBuildTools

 ✓ DistributionUtilities

 ✓ DocumentationTools



348 Part V: The Part of Tens 

 ✓ IntegratedDevelopmentEnvironments

 ✓ PythonDebuggers

 ✓ PythonEditors

 ✓ PythonShells

 ✓ SkeletonBuilderTools

 ✓ TestSoftware

 ✓ UsefulModules

 ✓ VersionControl

Interestingly enough, it’s quite possible that the lists on the Python 
DevelopmentTools site aren’t even complete. You can find Python tools listed 
in quite a few places online.

Given that a single chapter can’t possibly cover all the tools out there, this 
chapter discusses a few of the more interesting tools — those that merit a 
little extra attention on your part. After you whet your appetite with this 
chapter, seeing what other sorts of tools you can find online is a good idea. 
You may find that the tool you thought you might have to create is already 
available, and in several different forms.

Tracking Bugs with Roundup 
Issue Tracker

You can use a number of bug-tracking sites with Python, such as the fol-
lowing: Github (https://github.com/); Google Code (https://code.
google.com/); BitBucket (https://bitbucket.org/); and Launchpad 
(https://launchpad.net/). However, these public sites are generally not 
as convenient to use as your own specific, localized bug-tracking software. 
You can use a number of tracking systems on your local drive, but Roundup 
Issue Tracker (http://roundup.sourceforge.net/) is one of the better 
offerings. Roundup should work on any platform that supports Python, and it 
offers these basic features without any extra work:

 ✓ Bug tracking

 ✓ TODO list management



349 Chapter 19: Ten Interesting Tools

If you’re willing to put a little more work into the installation, you can get 
additional features, and these additional features are what make the product 
special. However, to get them, you may need to install other products, such 
as a DataBase Management System (DBMS). The product instructions tell 
you what to install and which third-party products are compatible. After you 
make the additional installations, you get these upgraded features:

 ✓ Customer help-desk support with the following features:

 •	Wizard for the phone answerers

 •	Network links

 •	System and development issue trackers

 ✓ Issue management for Internet Engineering Task Force (IETF) working 
groups

 ✓ Sales lead tracking

 ✓ Conference paper submission

 ✓ Double-blind referee management

 ✓ Blogging (extremely basic right now, but will become a stronger offering 
later)

Creating a Virtual Environment 
Using VirtualEnv

Reasons abound to create virtual environments, but the main reason for to 
do so with Python is to provide a safe and known testing environment. By 
using the same testing environment each time, you help ensure that the appli-
cation has a stable environment until you have completed enough of it to test 
in a production-like environment. VirtualEnv (https://pypi.python.org/
pypi/virtualenv) provides the means to create a virtual Python environ-
ment that you can use for the early testing process or to diagnose issues that 
could occur because of the environment. It’s important to remember that 
there are at least three standard levels of testing that you need to perform:

 ✓ Bug: Checking for errors in your application

 ✓ Performance: Validating that your application meets speed, reliability, 
and security requirements

 ✓ Usability: Verifying that your application meets user needs and will react 
to user input in the way the user expects



350 Part V: The Part of Tens 

 Because of the manner in which most Python applications are used (see 
Chapter 18 for some ideas), you generally don’t need to run them in a virtual 
environment after the application has gone to a production site. Most Python 
applications require access to the outside world, and the isolation of a virtual 
environment would prevent that access.

Installing Your Application 
Using PyInstaller

Users don’t want to spend a lot of time installing your application, no matter 
how much it might help them in the end. Even if you can get the user to 
attempt an installation, less skilled users are likely to fail. In short, you need 
a surefire method of getting an application from your system to the user’s 
system. Installers, such as PyInstaller (http://www.pyinstaller.org/), 
do just that. They make a nice package out of your application that the user 
can easily install.

Never test on a production server
A mistake that some developers make is to test 
their unreleased application on the production 
server where the user can easily get to it. Of the 
many reasons not to test your application on a 
production server, data loss has to be the most 
important. If you allow users to gain access to 
an unreleased version of your application that 
contains bugs that might corrupt the database 
or other data sources, the data could be lost or 
damaged permanently.

You also need to realize that you get only one 
chance to make a first impression. Many soft
ware projects fail because users don’t use the 
end result. The application is complete, but no 
one uses it because of the perception that the 
application is flawed in some way. Users have 

only one goal in mind: to complete their tasks 
and then go home. When users see that an 
application is costing them time, they tend not 
to use it.

Unreleased applications can also have secu
rity holes that nefarious individuals will use to 
gain access to your network. It doesn’t matter 
how well your security software works if you 
leave the door open for anyone to come in. 
After they have come in, getting rid of them is 
nearly impossible, and even if you do get rid of 
them, the damage to your data is already done. 
Recovery from security breaches is notoriously 
difficult — and sometimes impossible. In short, 
never test on your production server because 
the costs of doing so are simply too high.



351 Chapter 19: Ten Interesting Tools

Fortunately, PyInstaller works on all the platforms that Python supports, so 
you need just the one tool to meet every installation need you have. In addi-
tion, you can get platform-specific support when needed. For example, when 
working on a Windows platform, you can create code-signed executables. 
Mac developers will appreciate that PyInstaller provides support for bundles. 
In many cases, avoiding the platform-specific features is best unless you 
really do need them. When you use a platform-specific feature, the installa-
tion will succeed only on the target platform.

 A number of the installer tools that you find online are platform specific. For 
example, when you look at an installer that reportedly creates executables, 
you need to be careful that the executables aren’t platform specific (or at least 
match the platform you want to use). It’s important to get a product that will 
work everywhere it’s needed so that you don’t create an installation package 
that the user can’t use. Having a language that works everywhere doesn’t help 
when the installation package actually hinders installation.

Building Developer Documentation 
Using pdoc

Two kinds of documentation are associated with applications: user and 
developer. User documentation shows how to use the application, while 
developer documentation shows how the application works. A library 
requires only one sort of documentation, developer, while a desktop applica-
tion may require only user documentation. A service might actually require 

Avoid the orphaned product
Some Python tools floating around the Internet 
are orphaned, which means that the devel
oper is no longer actively supporting them. 
Developers still use the tool because they 
like the features it supports or how it works. 
However, doing so is always risky because 
you can’t be sure that the tool will work with 
the latest version of Python. The best way to 
approach tools is to get tools that are fully sup
ported by the vendor who created them.

If you absolutely must use an orphaned tool 
(such as when an orphaned tool is the only 
one available to perform the task), make sure 
that the tool still has good community support. 
The vendor may not be around any longer, but 
at least the community will provide a source of 
information when you need product support. 
Otherwise, you’ll waste a lot of time trying to 
use an unsupported product that you might 
never get to work properly.



352 Part V: The Part of Tens 

both kinds of documentation depending on who uses it and how the service 
is put together. The majority of your documentation is likely to affect devel-
opers, and pdoc (https://github.com/BurntSushi/pdoc) is a simple 
solution for creating it.

The pdoc utility relies on the documentation that you place in your code in 
the form of docstrings and comments. The output is in the form of a text file 
or an HTML document. You can also have pdoc run in a way that provides 
output through a web server so that people can see the documentation 
directly in a browser. This is actually a replacement for epydoc, which is no 
longer supported by its originator.

Developing Application Code 
Using Komodo Edit

Several chapters have discussed the issue of Interactive Development 
Environments (IDEs), but none have made a specific recommendation. The 
IDE you choose depends partly on your needs as a developer, your skill level, 
and the kinds of applications you want to create. Some IDEs are better than 
others when it comes to certain kinds of application development. One of the 
better general-purpose IDEs for novice developers is Komodo Edit (http://
komodoide.com/komodo-edit/). You can obtain this IDE free, and it 
includes a wealth of features that will make your coding experience much 
better than what you’ll get from IDLE. Here are some of those features:

 ✓ Support for multiple programming languages

 ✓ Automatic completion of keywords

 ✓ Indentation checking

 ✓ Project support so that applications are partially coded before you even 
begin

 ✓ Superior support

However, the thing that sets Komodo Edit apart from other IDEs is that it has 
an upgrade path. When you start to find that your needs are no longer met by 
Komodo Edit, you can upgrade to Komodo IDE (http://komodoide.com/), 
which includes a lot of professional level support features, such as code pro-
filing (a feature that checks application speed) and a database explorer (to 
make working with databases easier).



353 Chapter 19: Ten Interesting Tools

Debugging Your Application 
Using pydbgr

A high-end IDE, such as Komodo IDE, comes with a complete debugger. Even 
Komodo Edit comes with a simple debugger. However, if you’re using something 
smaller, less expensive, and less capable than a high-end IDE, you might not 
have a debugger at all. A debugger helps you locate errors in your application 
and fix them. The better your debugger, the less effort required to locate and fix 
the error. When your editor doesn’t include a debugger, you need an external 
debugger such as pydbgr (https://code.google.com/p/pydbgr/).

 A reasonably good debugger includes a number of standard features, such as 
code colorization (the use of color to indicate things like keywords). However, 
it also includes a number of nonstandard features that set it apart. Here are 
some of the standard and nonstandard features that make pydbgr a good 
choice when your editor doesn’t come with a debugger:

 ✓ Smart eval: The eval command helps you see what will happen when 
you execute a line of code, before you actually execute it in the applica-
tion. It helps you perform “what if” analysis to see what is going wrong 
with the application.

 ✓ Out-of-process debugging: Normally you have to debug applications 
that reside on the same machine. In fact, the debugger is part of the 
application’s process, which means that the debugger can actually inter-
fere with the debugging process. Using out-of-process debugging means 
that the debugger doesn’t affect the application and you don’t even have 
to run the application on the same machine as the debugger.

 ✓ Thorough byte-code inspection: Viewing how the code you write is 
turned into byte code (the code that the Python interpreter actually 
understands) can sometimes help you solve tough problems.

 ✓ Event filtering and tracing: As your application runs in the debugger, it 
generates events that help the debugger understand what is going on. 
For example, moving to the next line of code generates an event, return-
ing from a function call generates another event, and so on. This feature 
makes it possible to control just how the debugger traces through an 
application and which events it reacts to.



354 Part V: The Part of Tens 

Entering an Interactive Environment 
Using IPython

The Python shell works fine for many interactive tasks. You’ve used it exten-
sively in this book. However, you may have already noted that the default 
shell has certain deficiencies (and if you haven’t, you’ll notice them as you 
work through more advanced examples). Of course, the biggest deficiency is 
that the Python shell is a pure text environment in which you must type com-
mands to perform any given task. A more advanced shell, such as IPython 
(http://ipython.org/), can make the interactive environment friendlier 
by providing GUI features so that you don’t have to remember the syntax for 
odd commands.

 IPython is actually more than just a simple shell. It provides an environment 
in which you can interact with Python in new ways, such as by displaying 
graphics that show the result of formulas you create using Python. In addition, 
IPython is designed as a kind of front end that can accommodate other lan-
guages. The IPython application actually sends commands to the real shell in 
the background, so you can use shells from other languages such as Julia and 
Haskell. (Don’t worry if you’ve never heard of these languages.)

One of the more exciting features of IPython is the ability to work in parallel 
computing environments. Normally a shell is single threaded, which means 
that you can’t perform any sort of parallel computing. In fact, you can’t 
even create a multithreaded environment. This feature alone makes IPython 
worthy of a trial.

Testing Python Applications 
Using PyUnit

At some point, you need to test your applications to ensure that they work 
as instructed. You can test them by entering in one command at a time and 
 verifying the result, or you can automate the process. Obviously, the auto-
mated approach is better because you really do want to get home for dinner 
someday and manual testing is really, really slow (especially when you 
make mistakes, which are guaranteed to happen). Products such as PyUnit 
(https://wiki.python.org/moin/PyUnit) make unit testing (the test-
ing of individual features) significantly easier.



355 Chapter 19: Ten Interesting Tools

The nice part of this product is that you actually create Python code to per-
form the testing. Your script is simply another, specialized, application that 
tests the main application for problems.

 You may be thinking that the scripts, rather than your professionally writ-
ten application, could be bug ridden. The testing script is designed to be 
extremely simple, which will keep scripting errors small and quite noticeable. 
Of course, errors can (and sometimes do) happen, so yes, when you can’t find 
a problem with your application, you do need to check the script.

Tidying Your Code Using Isort
It may seem like an incredibly small thing, but code can get messy, especially 
if you don’t place all your import statements at the top of the file in alpha-
betical order. In some situations, it becomes difficult, if not impossible, to 
figure out what’s going on with your code when it isn’t kept neat. The Isort 
utility (http://timothycrosley.github.io/isort/) performs the 
seemingly small task of sorting your import statements and ensuring that 
they all appear at the top of the source code file. This small step can have a 
significant effect on your ability to understand and modify the source code.

Just knowing which modules a particular module needs can be a help in 
locating potential problems. For example, if you somehow get an older ver-
sion of a needed module on your system, knowing which modules the appli-
cation needs can make the process of finding that module easier.

In addition, knowing which modules an application needs is important when 
it comes time to distribute your application to users. Knowing that the user 
has the correct modules available helps ensure that the application will run 
as anticipated.

Providing Version Control 
Using Mercurial

The applications you created while working through this book aren’t very 
complex. In fact, after you finish this book and move on to more advanced 
training applications, you’re unlikely to need version control. However, after 
you start working in an organizational development environment in which 
you create real applications that users need to have available at all times, 
version control becomes essential. Version control is simply the act of keeping 



356 Part V: The Part of Tens 

track of the changes that occur in an application between application releases 
to the production environment. When you say you’re using MyApp 1.2, you’re 
referring to version 1.2 of the MyApp application. Versioning lets everyone 
know which application release is being used when bug fixes and other kinds 
of support take place.

Numerous version control products are available for Python. One of the 
more interesting offerings is Mercurial (http://mercurial.selenic.
com/). You can get a version of Mercurial for almost any platform that 
Python will run on, so you don’t have to worry about changing products 
when you change platforms. (If your platform doesn’t offer a binary, execut-
able, release, you can always build one from the source code provided on the 
download site.)

Unlike a lot of the other offerings out there, Mercurial is free. Even if you find 
that you need a more advanced product later, you can gain useful experience 
by working with Mercurial on a project or two.

 The act of storing each version of an application in a separate place so that 
changes can be undone or redone as needed is called source code manage-
ment. For many people, source code management seems like a hard task. 
Because the Mercurial environment is quite forgiving, you can learn about 
source control management in a friendly environment. Being able to interact 
with any version of the source code for a particular application is essential 
when you need to go back and fix problems created by a new release.

The best part about Mercurial is that it provides a great online tutorial at 
http://mercurial.selenic.com/wiki/Tutorial. Following along on 
your own machine is the best way to learn about source control manage-
ment, but even just reading the material is helpful. Of course, the first tutorial 
is all about getting a good installation of Mercurial. The tutorials then lead 
you through the process of creating a repository (a place where application 
versions are stored) and using the repository as you create your application 
code. By the time you finish the tutorials, you should have a great idea of 
how source control should work and why versioning is an important part of 
application development.


